GENERATOR DATA

(AT400240)-Engine (BAA126422A)-CEM

SEPTEMBER 26, 2020

For Help Desk Phone Numbers Click here

Selected Model

Engine: 3412 Generator Frame: 594 Genset Rating (kW): 375.0 Line Voltage: 480

Fuel: Diesel Generator Arrangement: 1366617 Genset Rating (kVA): 468.0 Phase Voltage: 277

Frequency: 60 Excitation Type: Permanent Magnet Pwr. Factor: 0.8 Rated Current: 562.9

Duty: CONTINUOUS Connection: SERIES STAR Application: EPG Status: Current

Version: 39094 /38915 /39511 /13795

Spec Information

Generator Sp	ecification	Ge	nerator Efficiend	су
Frame: 594 Type: SR4B	No. of Bearings: 1	Per Unit Load	kW	Efficiency %
Winding Type: RANDOM WOU	IND Flywheel: 18.0	0.25	93.8	92.1
Connection: SERIES STAR	Housing: 0	0.5	187.5	94.4
Phases: 3	No. of Leads: 12	0.75	281.3	95.4
Poles: 4	Wires per Lead: 2	1.0	375.0	95.6
Sync Speed: 1800	Generator Pitch: 0.7333	1.1	412.5	95.6

Reactances	Per Unit	Ohms
SUBTRANSIENT - DIRECT AXIS X" _d	0.0948	0.0466
SUBTRANSIENT - QUADRATURE AXIS X" _q	0.0948	0.0466
TRANSIENT - SATURATED X' _d	0.1375	0.0676
SYNCHRONOUS - DIRECT AXIS X_d	1.8516	0.9101
SYNCHRONOUS - QUADRATURE AXIS X _q	0.9414	0.4627
NEGATIVE SEQUENCE X_2	0.0948	0.0466
ZERO SEQUENCE \mathbf{x}_0	0.0273	0.0134

Time Constants	Seconds
OPEN CIRCUIT TRANSIENT - DIRECT AXIS T'd0	2.6440
SHORT CIRCUIT TRANSIENT - DIRECT AXIS T'd	0.1963
OPEN CIRCUIT SUBSTRANSIENT - DIRECT AXIS T"d0	0.0094
SHORT CIRCUIT SUBSTRANSIENT - DIRECT AXIS T" _d	0.0072
OPEN CIRCUIT SUBSTRANSIENT - QUADRATURE AXIS T''_{q0}	0.0082
SHORT CIRCUIT SUBSTRANSIENT - QUADRATURE AXIS T''_q	0.0065
EXCITER TIME CONSTANT T _e	0.1400
ARMATURE SHORT CIRCUIT T _a	0.0303

Short Circuit Ratio: 0.87	Stat	tor Resistance = 0.0088 Ohms	Field Resistar	nce = 1.5 Ohms	
Voltage Regulation		Generator Excitation			
Voltage level adjustment: +/-	5.0%		No Load	Full Load, (r	ated) pf
Voltage regulation, steady state: +/-	0.5%			Series	Parallel
Voltage regulation with 3% speed change: +/-	0.5%	Excitation voltage:	10.24 Volts	29.17 Volts	Volts
Waveform deviation line - line, no load: less the	han 5.0%	Excitation current	2.27 Amps	5.32 Amps	Amps
Telephone influence factor: less than	50				

Selected Model

Engine: 3412 Generator Frame: 594 Genset Rating (kW): 375.0 Line Voltage: 480

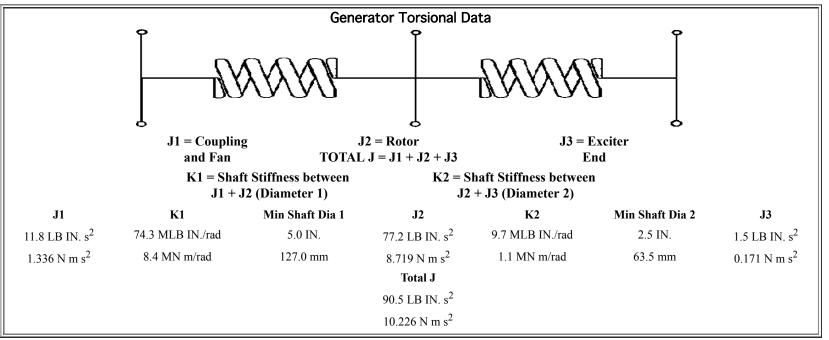
Fuel: Diesel Generator Arrangement: 1366617 Genset Rating (kVA): 468.0 Phase Voltage: 277

Frequency: 60 Excitation Type: Permanent Magnet Pwr. Factor: 0.8 Rated Current: 562.9

Duty: CONTINUOUS Connection: SERIES STAR Application: EPG Status: Current

Version: 39094 /38915 /39511 /13795

Generator Mechanical Information


Center of Gravity

Dimension X	-714.0 mm	-28.1 IN.
Dimension Y	0.0 mm	0.0 IN.
Dimension Z	0.0 mm	0.0 IN.

- "X" is measured from driven end of generator and parallel to rotor. Towards engine fan is positive. See General Information for details
- "Y" is measured vertically from rotor center line. Up is positive.
- "Z" is measured to left and right of rotor center line. To the right is positive.

Generator WT =
$$1714 \text{ kg}$$
 * Rotor WT = 597 kg * Stator WT = 1117 kg
3,779 LB 1,316 LB 2,463 LB

Rotor Balance = 0.0508 mm deflection PTP Overspeed Capacity = 150% of synchronous speed

Selected Model

Engine: 3412 Generator Frame: 594 Genset Rating (kW): 375.0 Line Voltage: 480

Fuel: Diesel Generator Arrangement: 1366617 Genset Rating (kVA): 468.0 Phase Voltage: 277

Frequency: 60 Excitation Type: Permanent Magnet Pwr. Factor: 0.8 Rated Current: 562.9

Duty: CONTINUOUS Connection: SERIES STAR Application: EPG Status: Current

-Version: 39094 /38915 /39511 /13795

Generator Cooling Requirements -Temperature - Insulation Data

Cooling Requirements: Temperature Data: (Ambient 40 ⁰C)

Heat Dissipated: 17.3 kW **Stator Rise:** $80.0 \, ^{0}\text{C}$ **Air Flow:** $112.2 \, \text{m}^{3}/\text{min}$ **Rotor Rise:** $80.0 \, ^{0}\text{C}$

Insulation Class: H

Insulation Reg. as shipped: $100.0 \text{ M}\Omega$ minimum at $40 \, ^{0}\text{C}$

Thermal Limits of Generator

Frequency: 60 Hz

Line to Line Voltage: 480 Volts

B BR 80/40 613.0 kVA

F BR -105/40 739.0 kVA

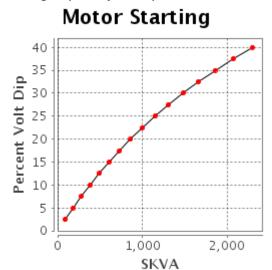
H BR - 125/40 813.0 kVA **F PR - 130/40** 813.0 kVA

Selected Model

Engine: 3412 Generator Frame: 594 Genset Rating (kW): 375.0 Line Voltage: 480

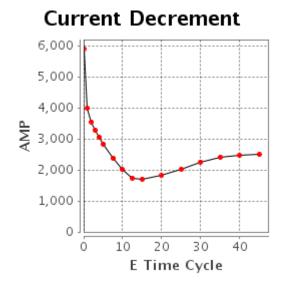
Fuel: Diesel Generator Arrangement: 1366617 Genset Rating (kVA): 468.0 Phase Voltage: 277

Frequency: 60 Excitation Type: Permanent Magnet Pwr. Factor: 0.8 Rated Current: 562.9


Duty: CONTINUOUS Connection: SERIES STAR Application: EPG Status: Current

Version: 39094 /38915 /39511 /13795

Starting Capability & Current Decrement


Motor Starting Capability (0.4 pf)

SKVA	Percent Volt Dip
89	2.5
182	5.0
280	7.5
384	10.0
493	12.5
610	15.0
733	17.5
863	20.0
1,003	22.5
1,151	25.0
1,310	27.5
1,480	30.0
1,663	32.5
1,860	35.0
2,072	37.5
2,303	40.0

Current Decrement Data

E Time Cycle	AMP
0.0	5,899
1.0	3,985
2.0	3,548
3.0	3,280
4.0	3,048
5.0	2,836
7.5	2,379
10.0	2,009
12.5	1,738
15.0	1,696
20.0	1,819
25.0	2,023
30.0	2,258
35.0	2,405
40.0	2,464
45.0	2,494

Instantaneous 3 Phase Fault Current: 5899 Amps

Instantaneous Line - Line Fault Current: 5109 Amps

Instantaneous Line - Neutral Fault Current: 7736 Amps

Selected Model

Engine: 3412 Fuel: Diesel Frequency: 60

Duty: CONTINUOUS

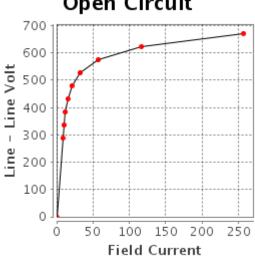
Generator Frame: 594

Generator Arrangement: 1366617

Excitation Type: Permanent Magnet **Connection:** SERIES STAR

Genset Rating (kW): 375.0 Genset Rating (kVA): 468.0

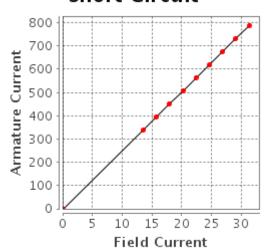
Pwr. Factor: 0.8 **Application:** EPG Line Voltage: 480 Phase Voltage: 277


Rated Current: 562.9 Status: Current

Version: 39094 /38915 /39511 /13795

Generator Output Characteristic Curves Open Circuit Curve

Open Circuit



Short Circuit Curve

Short Circuit

Field Current	Armature Current
0.0	0
13.5	338
15.7	395
17.9	451
20.2	507
22.4	564
24.7	620
26.9	677
29.1	733
31.4	789

Selected Model

Engine: 3412 Generator Frame: 594
Fuel: Diesel Generator Arrangement: 1366617

Frequency: 60 Excitation Type: Permanent Magnet

 Genset Rating (kW): 375.0 Genset Rating (kVA): 468.0

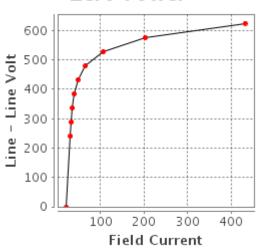
Pwr. Factor: 0.8

Application: EPG

Line Voltage: 480

Phase Voltage: 277
Rated Current: 562.9

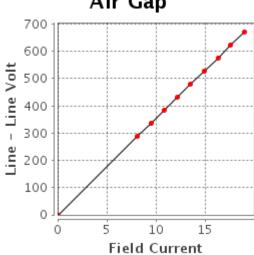
Status: Current


Version: 39094 /38915 /39511 /13795

Generator Output Characteristic Curves

Zero Power Factor Curve

Zero Power


Field Current	Line - Line Volt
22.4	0
31.5	240
33.4	288
35.9	336
40.2	384
48.4	432
66.2	480
107.1	528
203.2	576
431.6	624

Air Gap Curve

Air Gap

Field Current	Line - Line Volt
0.0	0
8.1	288
9.5	336
10.8	384
12.2	432
13.5	480
14.9	528
16.3	576
17.6	624
19.0	672

Selected Model

Engine: 3412
Fuel: Diesel
Frequency: 60

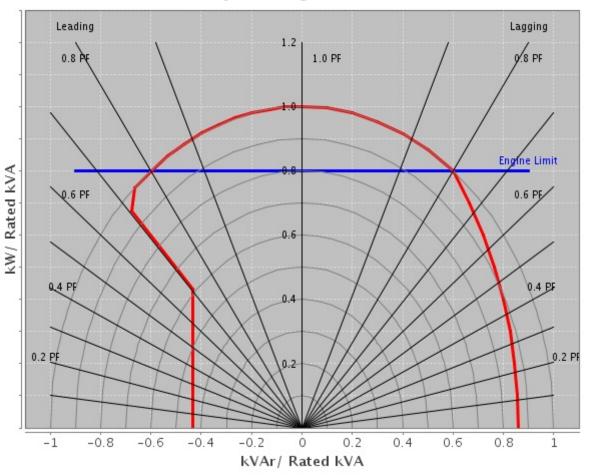
Duty: CONTINUOUS

Generator Frame: 594
Generator Arrangement: 1366617
Excitation Types Permanent Magnet

Excitation Type: Permanent Magnet **Connection:** SERIES STAR

Genset Rating (kVA): 468.0 Pwr. Factor: 0.8 Application: EPG

Genset Rating (kW): 375.0


Line Voltage: 480 Phase Voltage: 277 Rated Current: 562.9

Status: Current

Version: 39094 /38915 /39511 /13795

Reactive Capability Curve

Operating Chart

Selected Model

Engine: 3412 Generator Frame: 594 Genset Rating (kW): 375.0 Line Voltage: 480

Fuel: Diesel Generator Arrangement: 1366617 Genset Rating (kVA): 468.0 Phase Voltage: 277

Frequency: 60 Excitation Type: Permanent Magnet Pwr. Factor: 0.8 Rated Current: 562.9

Duty: CONTINUOUS Connection: SERIES STAR Application: EPG Status: Current

Version: 39094 /38915 /39511 /13795

General Information

DM7802

GENERATOR GENERAL INFORMATION

I. GENERATOR MOTOR STARTING CAPABILITY CURVES

A. THE MOTOR STARTING CURVES ARE REPRESENTATIVE OF THE DATA
OBTAINED BY THE FOLLOWING PROCEDURE:

1. THE CATERRIL ARE GENERATOR IS DRIVEN BY A SYNCHRONOUS

- 1. THE CATERPILLAR GENERATOR IS DRIVEN BY A SYNCHRONOUS DRIVER.
- 2. VARIOUS SIZE THREE PHASE INDUCTION MOTORS (NEMA CODE F) ARE STARTED ACROSS THE LINE LEADS OF THE UNLOADED GENERATOR.
- 3. THE RESULTING VOLTAGE DIPS ARE RECORDED WITH AN OSCILLOSCOPE.
- 4. MOTOR HORSEPOWER HAS BEEN CONVERTED TO STARTING KILOVOLT AMPERES (SKVA).
- 5. RECORDED VOLTAGE DIPS HAVE BEEN EXPRESSED AS A OF GENERATOR RATED VOLTAGE.

II. USE OF THE MOTOR STARTING CAPABILITY CURVES.
A. CALCULATE THE SKVA REQUIRED BY THE MOTOR FOR FULL VOLTAGE STARTING ACROSS THE LINE IF THE VALUE IS NOT LISTED ON THE MOTOR DATA PLATE.

1. MOTORS CONFORMING TO NEMA STANDARDS MULTIPLY THE MOTOR HORSEPOWER BY THE NEMA SKVA/HP FIGURE. FOR NEMA CODE F,USE 5.3 SKVA/HP; FOR NEMA CODE G, USE 6.0 SKVA/HP.

2. ALL OTHER MOTORS:

MULTIPLY THE RATED VOLTAGE BY THE LOCKED ROTOR AMPERE AND BY 0.001732. (IF THE LOCKED ROTOR AMPERES ARE NOT LISTED, MULTIPLY THE FULL LOAD (RUNNING) AMPERES BY B. USE THE ABOVE SKVA WITH THE MOTOR STARTING TABLE. 1. ACROSS LINE STARTING:

READ ACROSS THE ROW OF "ACROSS THE LINE STARTING SKVA IF THE DESIRED VALUE OF SKVA IS NOT GIVEN, CALCULATE THE DIP BY FINDING THE PROPER SKVA INTERVAL AND INTERPOLATING AS FOLLOWS:

SKVA1 IS THE SKVA TABLE ENTRY JUST SMALLER THAN THE DESIRED SKVA, DIP1 IS THE DIP FOR SKVA2, AND SKVA2 IS THE SKVA TABLE ENTRY JUST GREATER THAN THE DESIRED SKVA. THE DIP (IN PERCENT) AT THE DESIRED SKVA IS:

DIP = DIP1 + (SKVA - SKVA1) * 2.5 /

(SKVA2 - SKVA1) NOTE: VOLTAGE DIPS GREATER THAN 35% I

NOTE: VOLTAGE DIPS GREATER THAN 35% MAY CAUSE MAGNETIC CONTACTORS TO DROP OUT.

2. REDUCED VOLTAGE STARTING:

REFER TO THE FOLLOWING TABLE. MULTIPLY THE CALCULATE ACROSS LINE SKVA BY THE MULTIPLIER LISTED FOR THE SPECIFIC STARTING METHOD. APPLY THE RESULT TO

THE STARTING TABLE AS IN II A, TO CALCULATE THE EXPECTED VOLTAGE DIP:

TYPE OF REDUCED MULTIPLY

VOLTAGE STARTING LINE SKVA BY

80% TAP .80 65% TAP .65 50% TAP .50 45% TAP .45 Wye start,delta run .33

AUTOTRANSFORMER

80% TAP .68 65% TAP .46 50% TAP .29

NOTE: REDUCE VOLTAGE STARTING LOWERS THE MAXIMUM REQUIRED MOTOR skVA.

3. Part winding starting:

Most common is half-winding start, full-winding run. Multiply the full motor, across line starting skVA by 0.6. Apply the result to the selected curve as in ii. A above. Read the expected voltage dip, for the required skVA.

III.DEFINITION:

A. GENERATOR TERMS

MODEL: Engine Sales model
ENG TYPE: DI = Direct Injection,

NA = Naturally aspirated, etc

HZ: Running frequency, hertz

RATING TYPE: PP, SB (prime power or standby) KW: Base rating electrical kilowatts (ekW)

VOLTS: Rating terminal, line to line

GEN ARR: Cat generator arrangement part number GEN FRAME: Generator frame size designation

CONN: Generator output connection

(star, wye, delta, ect.)

POLES: Number of pole pieces on rotor.

(eg. A 4 pole generator run at 1800)

RPM will produce 60 Hz alternating current. A 6 pole generator run at 1200 RPM will produce 60 Hz alternating current.)

B. GENERATOR TEMPERATURE RISE:

The indicated temperature rise indicated the NEMA limits for standby or prime power applications. These rises are used for calculating the losses and efficiencies and are not necessarily indicative of the actual temperature rise of a given machine.

C. CENTER OF GRAVITY

The specified center of gravity is for the generator only. For single bearing, and two bearing close coupled generators, the cent

er of gravity is measured from the generator/engine flywheel housing i nterface and from the centerline of the rotor shaft.

For two bearing, standalone generators, the center of gravity is measu red from the end of the rotor shaft and from the centerline of the rot or shaft.

For two bearing, standalone generators, the center of gravity is measu red from the end of the rotor shaft and from the centerline of the rot or shaft.

D. GENERATOR DECREMENT CURRENT CURVES

The generator decrement current curve gives the symmetrical current supplied by the generator for a three phase bolted fault at the generator terminals. Generators equipped with the series boost attachment or generators with PM excitation system will supply 300% of rated current for at least 10 seconds.

E. GENERATOR EFFICIENCY CURVES

The efficiency curve is representative of the overall generator efficiency over the normal range of the electrical load and at the specified parameters. This is not the overall engine generator set efficiency curve.

Caterpillar Confidential: Green

Content Owner: Commercial Processes Division
Web Master(s): PSG Web Based Systems Support

Current Date: 9/26/2020, 10:58:32 AM © Caterpillar Inc. 2020 All Rights Reserved.

<u>Data Privacy Statement</u>.